
[1]

Appendix D
Self-Assessment Answers

In this appendix, you can find the answers to the end-of-chapter questions.

Chapter 1: Introduction to Angular and
its Concepts

1. What is the concept behind Angular Evergreen?
Answer: Angular Evergreen is about always keeping the version of Angular
up to date with the latest release. Keeping up to date is made feasible by
sticking to platform fundamentals and avoiding unnecessary third-party
libraries.

2. Using the double-click example for reactive streams, implement the
following steps using RxJS: Listen to click events from an HTML target with
the fromEvent function. Determine whether the mouse was double-clicked
within a 250 ms timeframe using the throttleTime, asyncScheduler,
buffer, and filter operators. If a double-click is detected, display an alert
in the browser. Hint: Use https://stackblitz.com or implement your code
and use https://rxjs.dev/ for help.
Answer: Refer to the Reactive data streams section and the double-click
example that is discussed in the chapter. See the live code example below to
better understand how a custom double-click handler could be implemented:
https://stackblitz.com/edit/ch1-question2

import { fromEvent, asyncScheduler } from 'rxjs';
import { buffer, filter, throttleTime } from 'rxjs/operators';

https://stackblitz.com
https://rxjs.dev/

Self-Assessment Answers

[2]

const throttleConfig = {
 leading: false,
 trailing: true
}

// click event stream
const clicks$ = fromEvent(document, 'click');

clicks$.pipe(
 buffer(clicks$.pipe(throttleTime(250, asyncScheduler,
throttleConfig))),
 // if array is equal to 2, double click occured
 filter(clickArray => clickArray.length === 2)
).subscribe(() => window.alert('Are you sure?'));

Refer to the documentation at https://rxjs.dev/api to learn more about
fromEvent, throttleTime, asyncScheduler, buffer, and filter.

3. What is NgRx, and what role does it play in an Angular application?
Answer: The NgRx library for Angular leverages the Flux pattern to enable
sophisticated state management for your applications. There are some
excellent reasons to use NgRx; for example, it's a great fit if you are dealing
with 3+ input streams into your application. In such a scenario, the overhead
of dealing with so many events makes it worthwhile to introduce a new
coding paradigm to your project. However, most applications only have
two input streams: REST APIs and user input. To a lesser extent, NgRx may
make sense if you are writing offline-first Progressive Web Apps (PWAs),
where you may have to persist complicated state information, or architecting
a niche enterprise app with similar needs.

4. What is the difference between a module, a component, and a service in
Angular?

Answer: The most basic unit of an Angular app is a component. A
component is the combination of a JavaScript class written in TypeScript
and an Angular template written in HTML, CSS, and TypeScript. The class
and the template fit together like a jigsaw puzzle through bindings, so
that they can communicate with each other. A component is the most used
directive in Angular.
A service is a class that can be injected into other services or components via
Angular's Dependency Injection (DI) mechanism.

https://rxjs.dev/api

Appendix D

[3]

A module contains metadata about and groups together components,
services, directives, pipes, user controls, or other modules to define an
Angular application or a feature module. Every Angular application kicks
off with a root module. You can organize your application into feature
modules, and through lazy loading, you can defer the loading of feature
modules until they're needed.

Chapter 2: Setting Up Your Development
Environment

1. What are the motivations for using a CLI tool as opposed to a GUI?
Answer: CLI commands are repeatable and lend themselves very well to
automation through scripting. Remember, anything that can be expressed
as a CLI command can also be automated.

2. For your specific operating system, what is the suggested package manager
to use?
Answer: For Windows, you can use Chocolatey or Scoop. For macOS and
Linux, you can use Brew.

3. What are some of the benefits of using a package manager?
Answer: Package managers make it easier to install and maintain the
software on your computer. They configure CLI tools correctly, so they
can run without adjusting any settings manually. Additionally, package
managers can upgrade your tools to their latest version without the user
having to go to multiple websites or launch multiple tools to discover
whether there are new versions. Package managers can also install and
maintain GUI tools.

4. What are the benefits of keeping the development environments of the
members of your development team as similar to one another as possible?

Answer: Having identical development environments reduces the chance of
a team member experiencing an error due to their development environment
configuration. Eliminating environmental factors makes it easier to identify
and resolve software bugs. Effectively resolving bugs is a major source of
cost and time savings for teams and companies.

Self-Assessment Answers

[4]

Chapter 3: Creating a Basic Angular App
1. I introduced the concept of a Kanban board. What is it, and what role does a

Kanban board play in our software application development?
Answer: Kanban is an Agile software development methodology to account
for changes in proprieties and features over time using a prioritized backlog
of items that can be worked on. A Kanban board enables collaboration and
effortless information radiation amongst team members by organizing
backlog items by their status, like to do, in progress, and completed. Using
a Kanban board, team members and managers understand the work that is
completed, in progress, or should be worked on next, eliminating confusion.

2. What were the different Angular parts we generated using the Angular
CLI tool to build out our Local Weather app after we initially created it,
and what function and role do each of them serve?
Answer: We generated three main objects using the Angular CLI:

 ° npx ng generate component current-weather: This generates
an Angular component with a component class as a TypeScript file,
a component template as an HTML file, a scoped style as a CSS file,
and a unit test file in the .spec.ts format. We can use a component
to render information in the browser.

 ° npx ng generate interface ICurrentWeather: This generates
a TypeScript file with a TypeScript interface exported from it. An
interface defines the shape of the data you're working with and passing
between components and services, or between client and server.

 ° npx ng g service weather --flat false: This generates
an Angular service that can be injected into a component like
CurrentWeatherComponent.

3. What are the different ways of binding data in Angular?
Answer: There are four main types of binding in Angular. The first three of
them are different types of one-way binding, and the last one is two-way
binding:

 ° Expression binding: This binding uses the double brackets syntax
{{ }} to bind public properties in your component class to the
template, so when the value of the property changes, the template is
automatically updated.

 ° Property binding: This binding uses the square bracket syntax [] to
bind public properties or inline JavaScript code to @Input targets in
other components. Components can subscribe to change events to
react to changes in bound data.

Appendix D

[5]

 ° Event binding: This binding uses the parenthesis syntax () to bind
to event handlers implemented inline or in your component class. @
Output event emitters in components trigger changes that can then
be handled by your component.

 ° Two-way binding: This binding uses the banana-in-the-box syntax
[()] to implement two-way binding. This means that whether the
property is updated in the class, in the template, or through any
dependent components, all values are automatically kept in sync.
This is the way AngularJS bindings worked by default, and it had
severe performance penalties. In Angular, you must explicitly enable
this behavior, and outside of limited scenarios, it should not be
commonly used.

4. Why do we need services in Angular?
Answer: Services allow the implementation of business logic in a decoupled,
cohesive, and encapsulated manner. Combined with dependency injection,
you can easily follow the DRY principle, and only implement the required
business logic once.

5. What is an Observable in RxJS?
Answer: An Observable is the most basic building block of RxJS and
represents an event stream, which emits any data received over time.
You can think of it as a continuous stream of data that flows in a pipe.
The Observable object by itself is benign. It must be activated by calling
.subscribe on it, which attaches a listener to the event stream. You can
implement an anonymous function within the subscribe method to handle
events. Handlers get executed whenever a new piece of data is received, and
an event is emitted. Observables are similar to event-based programming;
however, they are more feature-rich through the implementation of Subject,
which acts as both a listener and an emitter, with configurable behavior to
track the history of events.

6. What is the easiest way to present a clean UI if the data behind your template
is falsy?

Answer: Using the *ngIf structural directive you can control whether large
parts of your template get rendered or not. By doing this you can keep the
code within the ngIf simple, because you don't have to implement the safe
navigation operator for every property.

Self-Assessment Answers

[6]

Chapter 4: Automated Testing, CI, and
Releasing to Production

1. What is the test pyramid?
Answer: Mike Cohn's Testing Pyramid effectively summarizes the relative
number of tests of each kind we should create for our applications, taking
into account their speed and cost.

Figure 4.1: Mike Cohn's Testing Pyramid

Automating UI tests is costly, because of their risk of high change, making
them brittle. In addition, their execution time is slow, each test taking
multiple seconds. This forces developers to wait dozens of minutes before
they can iterate over changes. As a result, you should implement multiple
orders of magnitude fewer UI tests than your unit tests.

Integration tests exercise the integration of multiple components, so they
are at moderate risk of change and they execute faster than unit tests.
You should target an order of magnitude less integration tests than your
unit tests.

Unit tests are the fastest and cheapest kind of unit tests. They don't depend
on any outside data or function. You should implement thousands of unit
tests to verify the correctness of your code.

Appendix D

[7]

2. What are fixtures and matchers?
Answer: Fixtures help reduce code repetition in your tests. The following are
four common fixtures in Jasmine:

 ° beforeAll() – runs before all specs in describe
 ° afterAll() – runs after all specs in describe per test fixtures
 ° beforeEach() – runs before each spec in describe
 ° afterEach() – runs after each spec in describe

Matchers assist in asserting the correctness of your tests by comparing
expected values to actual values. Below is a list of common Jasmine matchers
used in combination with the expect assertion:
 expect(expected).toBe(actual)
 .toEqual(actual)
 .toBeDefined()
 .toBeFalsy()
 .toThrow(exception)
 .nothing()

For the full extent of Jasmine matchers, see https://jasmine.github.io/
api/edge/matchers.html.

3. What are the differences between a mock, a spy, and a stub?
Answer: A mock, stub, or spy is used to isolate your unit tests from any
external influences, and they do not contain any implementation whatsoever.
Mocks are configured in the unit test file to respond to specific function calls
with a set of responses that can be made to vary from test to test with ease. A
stub is a method with no implementation, either throwing a "not implement"
exception or returning a default, often falsy, value. A spy is a wrapper
around a mocked property or function with the ability to collect metadata
about how outside code interacted with a given property or function,
such as the number of times the property or function was called. You can
write assertions based on spies to ensure that your code is interacting with
external dependencies in the expected manner.

4. What is the benefit of building Angular in prod mode?
Answer: Angular ships with a robust build tool that can optimize the size of
your bundle by removing redundant, unused, and inefficient code from the
debug build and pre-compiling sections of code so browsers can interpret it
faster. Angular's ahead-of-time (AOT) compiler, tree-shaking algorithms,
and the Ivy rendering engine all play a part in optimizing your app.

https://jasmine.github.io/api/edge/matchers.html
https://jasmine.github.io/api/edge/matchers.html

Self-Assessment Answers

[8]

So, a 7 MB bundle can become 700 KB and load in sub-second speeds using
a fast 3G connection. Prod mode is a critical configuration for the efficient
delivery of Angular apps. Do not ship an Angular app without first enabling
prod mode.

5. How does GitHub flow work?
Answer: As GitHub puts it, "GitHub flow is a lightweight, branch-based
workflow that supports teams and projects where deployments are made
regularly." GitHub flow consists of 6 steps, as shown in the following
graphic from GitHub:

Figure 4.8: GitHub flow diagram

1. Branch – always add new code for a bug or a feature in a new branch.
2. Commit – make multiple commits to your branch.
3. Create a pull request – signal the readiness of your work to your

team members and view CI results in a pull request.
4. Discuss and review – request a review of your code changes, address

general or line-level comments, and make necessary modifications.
5. Deploy – optionally test your code on a test server or in production

with the ability to roll back to the master.
6. Merge – apply your changes to the master branch using GitHub flow.

You can ensure that only high-quality code ends up in the master
branch. A solid foundation sets other team members up for success
when they start making their changes.

6. Why should we protect the master branch?

Answer: You need to restrict push access to the master branch to enforce
GitHub flow and prevent accidental pushes that can rewrite your Git history.
In addition, if you implemented a Continuous Deployment (CD) pipeline,
you could accidentally push unvetted code to a dev or prod server.

Appendix D

[9]

Chapter 5: Delivering High-Quality User
Experiences

1. What are the benefits of using Angular Material?
Answer: The goal of the Angular Material project is to provide a collection
of useful and standard-setting high-quality UI components. The library
implements Google's Material Design specification, which is pervasive in
Google's mobile apps, web properties, and the Android operating system.
Angular Material components are a11y, i18n, mobile, and theming friendly,
while being performance conscious and compatible with the latest version
of Angular.

2. Which underlying CSS technology does Angular Flex Layout rely on?
Answer: As the Angular Flex Layout documentation on GitHub aptly puts it
"Angular Flex Layout provides a sophisticated layout API using FlexBox CSS
and mediaQuery, [prodividing] developers with component layout features
using a custom Layout API, mediaQuery observables, and injected DOM
flexbox-2016 CSS stylings."

3. Why is it important to test for accessibility?
Answer: Accessibility, or a11y, is crucial in engaging 100% of your user base.
Many users, with varying levels of abilities, rely on automated software like
screen readers that can interpret the content of your website in different
formats, like audio. It is therefore critical to implement aria labels correctly
in your application to ensure full compatibility with such automated
tools. In addition, governments and large enterprises must adhere to laws
ensuring compatibility with such tools.
Check out https://pa11y.org/ for automated verification tools that
you can integrate into your CI pipeline to ensure that your application is
compatible.

4. Why should you build an interactive prototype?

Answer: Appearances do matter. Whether you're working as part of a
development team or as a freelancer, your colleagues, bosses, or clients
will always take a well-put-together presentation more seriously over a
rough sketch. But it is also important to quickly communicate ideas without
wasting too much time on them.
A prototyping tool will help you create a better, more professional-looking,
mock-up of the app. Whatever tool you choose should also support the UI
framework you choose to use, in this case, Material.

https://pa11y.org/

Self-Assessment Answers

[10]

If a picture is worth a thousand words, an interactive prototype of your app
is worth a thousand lines of code. An interactive mock-up of the app will
help you vet ideas before you write a single line of code and save you a lot
of code writing.

Chapter 6: Forms, Observables, and
Subjects

1. What is the async pipe?
Answer: The async pipe automatically subscribes to the current value of
an Observable property and makes it available to the template to be used
in an imperative manner as a named variable. Additionally, the async pipe
implicitly manages the subscription to the Observable property, so you
don't have to worry about unsubscribing from it.

2. Explain how reactive and imperative programming are different and which
technique we should prefer.
Answer: Imperative programming is linear. From the start of your program
to the end of it, you must implement every function in sequence. Imperative
thinking can only execute on a single core of CPU. As you might be aware,
Moore's law doesn't grant us doubling of performance every 12-18 months
anymore, so we must rely on a multi-core processor to speed up our code
instead. Further, the network stack of our operating systems does not execute
on a single thread. They make full use of modern CPUs and networking
architecture to leverage multi-threaded workloads to speed up data
transfers. This is the reality in which browsers exist — multi-core, multi-
threaded CPUs and networking. For our JavaScript code to be efficient, we
must take advantage of these features. AJAX was the first implementation
of asynchronously loaded content in your HTML to create interactive
experiences. However, most asynchronous implementations leverage
callbacks, which is an imperative way of thinking about asynchronous
problems: i.e. wait until A and B are done before doing C and D. This style
of coding doesn't scale when every component of your application becomes
asynchronous. Because if C can be executed right as A and B are done
independently, we could be wasting time before finally getting to execute
D. With reactive programming, we can define composable workloads that
express our true intent. i.e. If we can define A → C → D, and B → C → D
needs to happen, we don't necessarily care whether A or B gets completed
first.

Appendix D

[11]

If you multiply this example by 10 or 100 times more variables, you will
begin to get an appreciation of how complex Angular and your code sitting
on top of it can get. By leveraging reactive coding techniques, you give your
code the best chance to execute as quickly as possible.

3. What is the benefit of a BehaviorSubject, and what is it used for?
Answer: The default behavior of Subject is very much like generic pub/sub
mechanisms, such as jQuery events. However, in an asynchronous world
where components are loaded or unloaded in unpredictable ways, using
the default Subject is not very useful.
There are three advanced variants of subjects:

 ° ReplaySubject remembers and caches data points that occurred
within the data stream so that a subscriber can replay old events
at any given time.

 ° BehaviorSubject remembers only the last data point while
continuing to listen for new data points.

 ° AsyncSubject is for one-time-only events that are not expected to
reoccur.

ReplaySubject can have severe memory and performance implications on
your application, so it should be used with care.
Most components you implement will display the latest data received from
the server. Through user input or other events, they still need to be able to
receive new data so that we can keep them up to date. The BehaviorSubject
would be the appropriate mechanism to meet these needs.

4. What are memory leaks and why should they be avoided?

Answer: A memory leak happens when an object is orphaned in memory.
This happens because a pointer referencing the object was removed, but
the referenced object was left behind. In event-based development, leaks
commonly happen through event handlers that are not properly cleared or
unsubscribed from. Subscriptions are a convenient way to read a value from
a data stream to be used in your application logic. If unmanaged, they can
create memory leaks in your application. A leaky application will end up
consuming ever-increasing amounts of RAM, eventually leading the browser
tab to become unresponsive. This can lead to a negative perception of your
app and, even worse, potential data loss, which can frustrate end users.

Self-Assessment Answers

[12]

Chapter 7: Creating a Router-First Line-
Of-Business App

1. What is the Pareto principle?
Answer: The Pareto principle, also known as the 80-20 rule, states that we
can accomplish 80% of our goals with 20% of the overall effort.

2. What are the main goals of router-first architecture?
Answer: Router-first architecture is a way to:

 ° Enforce high-level thinking
 ° Ensure consensus on features, before you start coding
 ° Plan for your code base/team to grow
 ° Introduce little engineering overhead

3. What is the difference between the root module and a feature module?
Answer: The root module defines all the components, directives, pipes,
services, and modules that must be present to load your Angular application.
A feature module encapsulates functionality that can be eagerly or lazily
loaded.

4. What are the benefits of lazy loading?
Answer: Lazy loading enables us to load feature modules into the browser
as they are needed. With a lazy loaded architecture, you can ensure that
the size of your root module remains consistent, so that your application
will load quickly for every type of user you have. As users navigate around
your application, they can load parts of it on demand. You can also leverage
this feature as an additional layer of security by disallowing users from
downloading code related to features they don't need to see. However,
remember that real security is always achieved by protecting your server-
side endpoints. In addition, you can apply advanced techniques to eagerly
load modules before a user is predicted to click on them.

5. Why create a walking-skeleton of your application?

Answer: It is essential to nail down a walking-skeleton navigation experience
of your application early on. Implementing a clickable version of your
app will help you gather feedback from users early on. That way, you'll
be able to work out fundamental workflow and integration issues quickly.
Additionally, you'll be able to establish a concrete representation of the
scope of your current development effort.

Appendix D

[13]

Developers and stakeholders alike will be able to better visualize how the
end product will look. You will also be able to work out any lazy loading
issues quickly.
A walking-skeleton also sets the stage for multiple teams to work in
tandem. Multiple people can start developing different feature modules
or components at the same time, without worrying about how the puzzle
pieces are going to come together later on.

Chapter 8: Designing Authentication and
Authorization

1. What's in-transit and at-rest security?
Answer: In-transit security means that your data is secure/encrypted when
traveling from point A to point B. This is commonly achieved by using TLS/
SSL and HTTPS. HTTPS is the technology that internet commerce relies on
to be feasible.
At-rest security means that your data is encrypted when stored on a file
system or a database. In such a configuration, an attacker would need to
break into multiple systems to extract data stored in your systems. Most data
breaches occur because in-transit or at-rest security has not been properly
implemented. In-transit and at-rest security work together to ensure the
security of your system.

2. What's the difference between authentication and authorization?
Answer: Authentication is the act of verifying the identity of a user, and
authorization specifies the privileges that a user must have to access a
resource. Both processes, auth for short, must seamlessly work in tandem to
address the needs of users with varying roles, needs, and job functions.

3. Explain inheritance and polymorphism.
Answer: Inheritance is an Object-Oriented Programming (OOP) concept
that allows you to adopt the properties and behaviors of a base class. An
example of inheritance is a base Vehicle class with properties and functions
that define fuel level and movement inherited by a Car or a Tank class. Both
Car and Tank can move forward, backwards, left, or right while consuming
fuel.
Polymorphism is the fact that how a Car or a Tank moves, and their different
rates of fuel consumption, are two quite different implementations.

Self-Assessment Answers

[14]

The value of inheritance and polymorphism is derived when a Driver class
can drive a generic Vehicle without having to change its code. This is similar
to how LemonMart can leverage an AuthService to implement complex
login and logout actions, while the underlying authentication mechanism can
be completely different.

4. What is an abstract class?
Answer: An abstract class is a base class that can be inherited from, but
cannot be instantiated as an object. This allows us to encapsulate reusable
code, enforceable patterns, and other class-level implementations that can
be lent to other classes through inheritance. After all, it doesn't make sense
to drive a Vehicle that doesn't know how it moves or an AuthService that
doesn't know how it authenticates.

5. What is an abstract method?
Answer: An abstract method is defined in an abstract class. An abstract
method defines the desired functionality and its signature. It contains no
implementation. So, an abstract turnLeft function in an abstract Vehicle
class or an abstract getCurrentUser function in an abstract AuthService
indicates that their inheritors must define the behaviors of those functions.

6. Explain how the AuthService adheres to the Open/Closed principle.
Answer: Familiarize yourself with SOLID principles. Open/Closed means
that your implementation is open to extension but closed to modification.
AuthService adheres to this principle because using inheritance,
polymorphism, abstract classes, and methods, you can implement any auth
provider extending AuthService without changing the implementation of
AuthService.

7. How does JWT verify your identity?
Answer: JSON Web Token (JWT) implements distributed claims-based
authentication that can be digitally signed or integration that is protected
and/or encrypted using a Message Authentication Code (MAC). This
means that once a user's identity is authenticated (that is, a password
challenge on a login form), they receive an encoded claim ticket or a token,
which can then be used to make future requests to the system without
having to reauthenticate the identity of the user.
The server can independently verify the validity of this claim and process the
requests without requiring any prior knowledge of having interacted with
this user. Thus, we don't have to store session information regarding a user,
making our solution stateless and easy to scale.

Appendix D

[15]

Each token will expire after a predefined period and due to their distributed
nature, they can't be remotely or individually revoked; however, we can
bolster real-time security by interjecting custom account and user role status
checks to ensure that the authenticated user is authorized to access server-
side resources.

8. What is the difference between RxJS's combineLatest and merge operators?
Answer: combineLatest and merge allows us to listen to multiple data
streams simultaneously. Every time there's a change in each stream, the
pipe we implement gets executed.
merge emits every value from each stream as a single stream. This is useful
if you're listening to an event of the same kind from multiple resources, like
tweets from multiple people combined in a single list of tweets.
combineLatest emits an array only using the latest values from each stream.
This way we can filter out invalid combinations of data, and only trigger our
business logic when we encounter a valid combination. This is useful when
we need the current user's authentication status and profile information,
which come from separate sources, before we can allow the login process
to continue.

9. What is a router guard?
Answer: A router guard can check a given set of conditions, like auth status,
user role, or custom logic before allowing navigation to a route. In the case
of a feature module, this could mean the difference between downloading
a feature module or not.
As a reminder, auth controls are always enforced on the server side and
in your API implementation. Frontend features only serve to improve user
experience.

10. What does a service factory allow you to do?

Answer: A service factory allows you to dynamically inject an
implementation of a service at runtime, just like we inject a different auth
provider given the environment.ts configuration in LemonMart.

Chapter 9: DevOps Using Docker
1. Explain the difference between a Docker image and a Docker container.

Answer: A Docker image is to a container what a class is to an object. An
image for a web server is the declaration and definitions of that server's
settings, where the container is the instantiation of your server that is
running.

Self-Assessment Answers

[16]

2. What is the purpose of a CD pipeline?
Answer: Continuous Deployment (CD) is the idea that code changes that
successfully pass through your CI (continuous integration) pipeline can
be automatically deployed to a target environment. Although there are
examples of continuously deploying to production, most enterprises prefer
to target a dev environment with CD.
A gated approach to deployment is adopted to move the changes through
the various stages of dev, test, staging, and finally, production. Most CI
systems can facilitate gated deployment with approval workflows.

3. What is the benefit of CD?
Answer: CD (Continuous deployment) to a target environment, even if it is
a dev environment, means that anyone in an organization can continuously
inspect and test the work in progress. This is taking the concept of an
information radiator as a Kanban board to its functional and living-
documentation extreme.
Extremely sophisticated engineering shops can CD to consumers. However,
they also implement A/B testing and sophisticated methods to automatically
test the reliability of their deployments.

4. How do we cover the configuration gap?
Answer: The configuration gap is when a set of configuration works in
a development environment, but it fails in a production environment. It
happens between the time code is committed and shipped, as shown in the
diagram below:

Figure 9.3: Covering the configuration gap

Appendix D

[17]

The configuration gap is closed/covered when we leverage Infrastructure-
as-code (IaC) and Docker to create repeatable environments at every stage of
development and deployment.

5. What does a CircleCI orb do?
Answer: An orb encapsulates the configuration of prerequisite CLI tools for a
CI job.

6. What are the benefits of using a multi-stage Dockerfile?
Answer: By leveraging a multi-stage Dockerfile, we can define a
customized build environment, and only ship the necessary bytes at the end
of the process. For example, we can avoid shipping 250+ MB of development
dependencies to our production server, and only deliver a 7 MB container
that has a minimal memory footprint.

7. How does a code coverage report help maintain the quality of your app?

Answer: Code coverage reflects the percentage of code that is covered by
unit tests in your application. You can use code coverage as a quality control
gate in your GitHub flow to ensure that new code isn't reducing your overall
coverage. This is a great way to reinforce the Test-Driven Development
(TDD) mindset on your individual projects or with your team. However, a
high code coverage metric alone is not an indicator of high quality. We must
test the right things and avoid testing functionality that the framework or
library provides for us. TDD is a deep topic. I recommend Kent Beck's Test-
Driven Development: By Example as a good resource.

Chapter 10: Restful APIs and Full-Stack
Implementation

1. What are the main components that make up a great developer experience?
Answer: The three main components are:

 ° Ease of use
 ° Happiness
 ° Effectiveness

If your developers will be working on your application for an extended
period of time, then it is very important to consider factors beyond
compatibility. Your stack, choice of tool, and coding style can greatly impact
whether or not your code base is easy to use, keeps your developers happy,
and makes them feel like effective contributors to the project.

Self-Assessment Answers

[18]

A well configured stack is key for a great Developer Experience (DX). It
can be the difference between a towering stack of dried out pancakes or a
delicious short stack with the right amount of butter and syrup over it.
By introducing too many libraries and dependencies, you can slow down
your progress, make your code difficult to maintain and find yourself in a
feedback loop of introducing more libraries to resolve the issues of other
libraries. The only way to win this game is to simply not play it.

2. What is a .env file?
Answer: A file that stores environment variables that are specific to your
environment. .env files often include secrets like passwords and API keys,
so they should never be committed to your Git repository. An accidental
exposure of a key or a password means that you must immediately rotate
the old secret with a new one, as your Git history is immutable.

3. What is the purpose of the authenticate middleware?
Answer: Middleware in Express.js can execute before an API endpoint/
implementation executes. The authenticate function is a middleware that we
use to ensure that only authenticated and authorized users can access any
given endpoint. Note that this is the only real way to enforce the security of
your system, so you must pay great attention to the proper implementation
of your API security. You can apply multiple middleware to an endpoint. For
example, the rich ecosystem of Express.js includes rate-limiting middleware
that can thwart attacks that attempt to guess a user's password, by artificially
slowing down server response times.

4. How is Docker Compose different than using a Dockerfile?
Answer: A Dockerfile defines a single executable environment, whereas a
Docker Compose file or docker-compose.yml can describe an infrastructure
with multiple environments using private networks to interact with each
other and define storage volumes to persist their data.

5. What is an ODM? How does it differ from an ORM?
Answer: An Object Document Mapper (ODM) represents documents in
a document-based datastore, like MongoDB, as objects in your application
code, giving you a natural way to interact with persisted entities. Mongoose
and DocumentTS are examples of ODMs. An Object Relation Mapper
(ORM) does the same thing for relational databases. Entity Framework
and NHibernate are examples of ORMs.

Appendix D

[19]

6. What are the uses of Swagger?
Answer: Swagger allows you to design and document your web API.
For teams, it can act as a great communication tool between frontend and
backend developers, reducing a lot of friction. Defining your API surface
early on allows implementation to begin without worrying about late-stage
integration challenges.

7. How would you refactor the code for the /v2/users/{id} PUT endpoint in
userRouter.ts so the code is reusable?

Answer: You can move the logic of updating a user into a new function in
userService.ts, so it can be reused from multiple endpoints.
Observe the differences between the new userService.ts and userRouter.
ts files as shown below:

server/src/services/userService.ts

export async function updateUser(
 userData: User,
 userId: string
) {
 const _userId = new ObjectID(userId)
 delete userData._id
 await UserCollection.findOneAndUpdate(
 { _id: _userId },
 {
 $set: userData,
 }
)
 const user = await UserCollection.findOne({ _id: _userId })
 return user
}

server/src/v2/routes/userRouter.ts

router.put(
 '/:userId',
 authenticate({
 requiredRole: Role.Manager,
 permitIfSelf: {
 idGetter: (req: Request) => req.body._id,
 requiredRoleCanOverride: true,
 },
 }),

Self-Assessment Answers

[20]

 async (req: Request, res: Response) => {
 const userData = req.body as User
 const userId = req.params.userId as string
 const user = await updateUser(userData, userId)

 if (!user) {
 res.status(404).send({ message: 'User not found.' })
 } else {
 res.send(user)
 }
 }
)

Chapter 11: Recipes – Reusable Forms,
Routing, and Caching

1. What is the difference between a component and a user control?
Answer: User controls are inherently highly reusable, tightly coupled,
and customized components to enable rich user interactions. Rich user
interactivity usually requires complicated code that manages DOM
interactions. On the other hand, components implement business logic
and should be kept as simple as possible, so they are easy to maintain
and modify to accommodate ever-changing business requirements. Note
that this is a conceptual differentiation. Both concepts are implemented as
Angular components. However, a user control usually also implements
the ControlValueAccessor interface.

2. What is an attribute directive?
Answer: Attribute directives allow you to define new attributes that you
can add to HTML elements or components to add new behavior to them.

3. What is the purpose of the ControlValueAccessor interface?
Answer: The ControlValueAccessor interface standardizes change
detection in user controls, so that your custom controls will play nicely
with forms and the form validation engine.

4. What is serialization, deserialization, and hydration?
Answer: An object in memory is serialized to textual form so it can be
exchanged between components. This can mean transferring data over
the wire, storing data in a database, or passing data between components.

Appendix D

[21]

Serialized data is deserialized to reconstruct the data as an object. In
JavaScript, JSON is a generic object, so deserializing to JSON may not be
enough. To reflect the true nature of the data received, we hydrate a class
that represents the correct type by instantiating a new object and filling it
with deserialized data. In the example of the User object from the book, this
allows us to use calculated properties like fullName in our application code.

5. What does it mean to patch values on a form?
Answer: The patchValue function on a FormGroup allows us to merge the
existing values of the form with a set of new properties provided either
partially or completely. Patching values makes it efficient to update only a
few values, otherwise we would have to rebuild the FormGroup object from
scratch with every update or set each input's value individually.

6. How do you associate two independent FormGroup objects with each other?

Answer: By leveraging an abstract BaseForm class, we can define a common
interface for forms to interact with each other. A child form can implement
an @Output() formReady: EventEmitter<AbstractControl> property
and a parent form can listen to this event.
Once instantiated, the parent can register the child form when it's ready by
listening for the formReady event with (formReady)="registerForm('na
me', $event)".
registerForm leverages FormGroup's setControl function, which
seamlessly integrates the child form as a part of the parent form. In this
new form, validation controls continue to work as expected, which is a
big win for reducing code complexity.

Chapter 12: Recipes – Master/Detail, Data
Grids, and ngrx

1. What is a resolve guard?
Answer: Resolve guards are used to reduce boilerplate and asynchronous
code handling, by synchronously providing loading data before navigating
to a component.

2. What are the benefits of router orchestration?
Answer: Router orchestration is used to orchestrate how components load
data or render via route definitions and dynamically defined routerLink
attributes. Using router orchestration, you can define distinct UI layouts using
a combination of components without having to define new components.

Self-Assessment Answers

[22]

3. What is an auxiliary route?
Answer: Auxiliary routes are routes that are independent of each other
where they can render content in named outlets that have been defined
in the markup, such as <router-outlet name="master"> or <router-
outlet name="detail">. Furthermore, auxiliary routes can have their
own parameters, browser history, children, and nested auxiliaries.
Auxiliary routers are key in enabling rich router orchestration workflows.

4. How is NgRx different than using RxJS/Subject?
Answer: The NgRx library brings reactive state management to Angular
based on RxJS. State management with NgRx allows developers to write
atomic, self-contained, and composable pieces of code, creating actions,
reducers, and selectors. This kind of reactive programming allows side-
effects in state changes to be isolated. In essence, NgRx is an abstraction
layer over RxJS to fit the Flux pattern.
The Flux pattern requires many parts to express a centralized store of
information, whereas an RxJS/Subject is only a line of code per object
tracked to express a similar intent.
Deciding whether to use NgRx in your project or not requires a strong grasp
of what it entails to implement an NgRx application and how far you can
push out-of-the-box RxJS functionality.
Note that you can limit the implementation of NgRx in feature modules. So,
if only a portion of your application is real-time and complicated enough to
warrant NgRX, it may make more sense to implement a hybrid approach.

5. What's the value of NgRx Data?
Answer: If NgRx is a configuration-based framework, NgRx Data is a
convention-based sibling of NgRx. NgRx Data automates the creation
of stores, effects, actions, reducers, dispatches, and selectors. If most of
your application actions are Create, Read, Update, and Delete (CRUD)
operations, then NgRx Data can achieve the same result as NgRx with a lot
less code.
NgRx Data may be a much better introduction to the Flux pattern for you
and your team than NgRx itself.

6. In UserTableComponent why do we use readonly isLoadingResults$:
BehaviorSubject<Boolean> over a simple Boolean to drive the loading
spinner?
Answer: To avoid the ExpressionChangedAfterItHasBeenCheckedError
of course! When using asynchronous data in your templates that update
during a life-cycle change event of your component, you will get the error
ExpressionChangedAfterItHasBeenCheckedError.

Appendix D

[23]

You need to use an RxJS/Subject and use the async pipe to bind the value
in your template, so no matter when your data arrives the template will
react to the new data appropriately and do so without leaking memory.

Chapter 13: Highly-Available Cloud
Infrastructure on AWS

1. What are the benefits of right-sizing your infrastructure?
Answer: Right-sizing your infrastructure has massive cost benefits to your
organization, while maintaining high levels of consumer satisfaction. If
you provide too few resources, your customers will complain about slow
performance. If you over-compensate, then you will needlessly pay for
infrastructure that you're not using.

2. What is the benefit of using AWS ECS Fargate over AWS ECS?
Answer: AWS ECS Fargate abstracts physical servers from your cluster
configuration, whereas with AWS ECS you must specify your own EC2
instances. In a niche deployment scenario, you may be required to use AWS
ECS, since Fargate is optimized for generalized use cases.

3. Did you remember to turn off your AWS infrastructure to avoid getting
billed extra?
Answer: This is a reminder for you to set your ECS service to require zero
instances, and ensure your ALB and EC2 instances are deprovisioned so
you don't incur continued charges on your AWS bill.

4. What is blue/green deployment?

Answer: Blue/green deployment enables you to deploy a new version
of your application without downtime. Blue/green deployments make
sure that your new deployment is healthy before draining connections
from existing servers to new ones. When drained, the old servers are
decommissioned, and all users are seamlessly transitioned over to the new
servers. If the new deployment is not healthy, the deployment will fail,
avoiding an outage. A full-stack stateless architecture is the easiest way
to enable blue/green deployments.

Self-Assessment Answers

[24]

Chapter 14: Google Analytics and
Advanced Cloud Ops

1. What is the benefit of load testing?
Answer: Stressing your system using a realistically modelled load test
ensures that your infrastructure is right-sized to meet customer demands.
This is critical to ensure that your infrastructure spending is kept to a
minimum while ensuring that customers are satisfied with the performance
of your system.
As my colleague Brendon Caulkins points out, load testing can also point
out code that is poorly performant, and help identify code-level issues that
cannot be solved with "more horsepower" and should be looked at by the
development team.
Good performance is good UX.

2. What are some considerations for reliable cloud scaling?
 ° Real-time monitoring of infrastructure metrics
 ° Dynamic scaling of infrastructure
 ° Well calibrated scale-in/scale-out metrics
 ° Blue/green deployments

3. What is the value of measuring user behavior?

Answer: Tracking user behavior allows you to measure user engagement.
In web applications, user engagement can validate or invalidate your
entire business model. So, you must track user behavior in order to run
a successful and efficient business.

